314 research outputs found

    Similarities and differences of functional connectivity in drug-naïve, first-episode adolescent and young adult with major depressive disorder and schizophrenia

    Get PDF
    Major depressive disorder (MDD) and schizophrenia (SZ) are considered two distinct psychiatric disorders. Yet, they have considerable overlap in symptomatology and clinical features, particularly in the initial phases of illness. The amygdala and prefrontal cortex (PFC) appear to have critical roles in these disorders; however, abnormalities appear to manifest differently. In our study forty-nine drug-naïve, first-episode MDD, 45 drug-naïve, first-episode SZ, and 50 healthy control (HC) participants from 13 to 30 years old underwent resting-state functional magnetic resonance imaging. Functional connectivity (FC) between the amygdala and PFC was compared among the three groups. Significant differences in FC were observed between the amygdala and ventral PFC (VPFC), dorsolateral PFC (DLPFC), and dorsal anterior cingulated cortex (dACC) among the three groups. Further analyses demonstrated that MDD showed decreased amygdala-VPFC FC and SZ had reductions in amygdala-dACC FC. Both the diagnostic groups had significantly decreased amygdala-DLPFC FC. These indicate abnormalities in amygdala-PFC FC and further support the importance of the interaction between the amygdala and PFC in adolescents and young adults with these disorders. Additionally, the alterations in amygdala-PFC FC may underlie the initial similarities observed between MDD and SZ and suggest potential markers of differentiation between the disorders at first onset

    Structural and functional abnormities of amygdala and prefrontal cortex in major depressive disorder with suicide attempts

    Get PDF
    Finding neural features of suicide attempts (SA) in major depressive disorder (MDD) may be helpful in preventing suicidal behavior. The ventral and medial prefrontal cortex (PFC), as well as the amygdala form a circuit implicated in emotion regulation and the pathogenesis of MDD. The aim of this study was to identify whether patients with MDD who had a history of SA show structural and functional connectivity abnormalities in the amygdala and PFC relative to MDD patients without a history of SA. We measured gray matter volume in the amygdala and PFC and amygdala-PFC functional connectivity using structural and functional magnetic resonance imaging (MRI) in 158 participants [38 MDD patients with a history of SA, 60 MDD patients without a history of SA, and 60 healthy control (HC)]. MDD patients with a history of SA had decreased gray matter volume in the right and left amygdala (F = 30.270, P = 0.000), ventral/medial/dorsal PFC (F = 15.349, P = 0.000), and diminished functional connectivity between the bilateral amygdala and ventral and medial PFC regions (F = 22.467, P = 0.000), compared with individuals who had MDD without a history of SA, and the HC group. These findings provide evidence that the amygdala and PFC may be closely related to the pathogenesis of suicidal behavior in MDD and implicate the amygdala-ventral/medial PFC circuit as a potential target for suicide intervention

    Structural and functional abnormities of amygdala and prefrontal cortex in major depressive disorder with suicide attempts

    Get PDF
    Finding neural features of suicide attempts (SA) in major depressive disorder (MDD) may be helpful in preventing suicidal behavior. The ventral and medial prefrontal cortex (PFC), as well as the amygdala form a circuit implicated in emotion regulation and the pathogenesis of MDD. The aim of this study was to identify whether patients with MDD who had a history of SA show structural and functional connectivity abnormalities in the amygdala and PFC relative to MDD patients without a history of SA. We measured gray matter volume in the amygdala and PFC and amygdala-PFC functional connectivity using structural and functional magnetic resonance imaging (MRI) in 158 participants [38 MDD patients with a history of SA, 60 MDD patients without a history of SA, and 60 healthy control (HC)]. MDD patients with a history of SA had decreased gray matter volume in the right and left amygdala (F = 30.270, P = 0.000), ventral/medial/dorsal PFC (F = 15.349, P = 0.000), and diminished functional connectivity between the bilateral amygdala and ventral and medial PFC regions (F = 22.467, P = 0.000), compared with individuals who had MDD without a history of SA, and the HC group. These findings provide evidence that the amygdala and PFC may be closely related to the pathogenesis of suicidal behavior in MDD and implicate the amygdala-ventral/medial PFC circuit as a potential target for suicide intervention

    Effects of different cooling methods on the carbon footprint of cooked rice

    Get PDF
    peer-reviewedGlobal warming has become a serious problem facing the international community. All countries strive to reduce greenhouse gas (GHG) emissions. The food system produces a large amount of GHGs, and thus study of the carbon footprint (CF) in the food industry has attracted the attention of researchers. Based on the lifecycle assessment (LCA) method, the present study calculated CFs of cooling of cooked rice, as a unit operation under different operational conditions. The results showed that the carbon footprints for cooling 200 g cooked rice were 54.36 ± 1.07 gCO2eq for refrigerator cooling at 0 °C, 66.05 ± 2.00 g CO2eq for refrigerator cooling at 8 °C, 741.55 ± 27.26 g CO2eq for vacuum cooling, 1914.10 ± 141.24 g CO2eq for air blast cooling at 0 °C, 2463.61 ± 221.21 g CO2eq for air blast cooling at 3 °C, and 3916.54 ± 202.28 g CO2eq for air blast cooling at 8 °C. In addition, the CF for the cooling process was positively correlated with the output power of equipment and the cooling time. The carbon emissions arising from electricity consumption contributed to most of the CF for the cooling process. Sensitivity analysis of the parameters for the CF for the cooling process revealed that the CF of cooling process was stable for the applied equipment emission factor, but sensitive to the efficiency of electricity use and the extent of load. Improving the efficiency of electricity use and increasing cooling load could reduce the final CF of a product

    Extremely large magnetoresistance in topologically trivial semimetal α\alpha-WP2_2

    Full text link
    Extremely large magnetoresistance (XMR) was recently discovered in many non-magnetic materials, while its underlying mechanism remains poorly understood due to the complex electronic structure of these materials. Here, we report an investigation of the α\alpha-phase WP2_2, a topologically trivial semimetal with monoclinic crystal structure (C2/m), which contrasts to the recently discovered robust type-II Weyl semimetal phase in β\beta-WP2_2. We found that α\alpha-WP2_2 exhibits almost all the characteristics of XMR materials: the near-quadratic field dependence of MR, a field-induced up-turn in resistivity following by a plateau at low temperature, which can be understood by the compensation effect, and high mobility of carriers confirmed by our Hall effect measurements. It was also found that the normalized MRs under different magnetic fields has the same temperature dependence in α\alpha-WP2_2, the Kohler scaling law can describe the MR data in a wide temperature range, and there is no obvious change in the anisotropic parameter γ\gamma value with temperature. The resistance polar diagram has a peanut shape when field is rotated in ac\textit{ac} plane, which can be understood by the anisotropy of Fermi surface. These results indicate that both field-induced-gap and temperature-induced Lifshitz transition are not the origin of up-turn in resistivity in the α\alpha-WP2_2 semimetal. Our findings establish α\alpha-WP2_2 as a new reference material for exploring the XMR phenomena.Comment: 18 pages, 12 figure

    Tailoring the supramolecular structure of amphiphilic glycopolypeptide analogue toward liver targeted drug delivery systems

    Get PDF
    Amphiphilic glycopolypeptide analogues have harboured great importance in the development of targeted drug delivery systems. In this study, lactosylated pullulan-graft-arginine dendrons (LP-g-G3P) was synthesized using Huisgen azide-alkyne 1,3-dipolar cycloaddition between lactosylated pullulan and generation 3 arginine dendrons bearing Pbf and Boc groups on the periphery. Hydrophilic lactosylated pullulan was selected for amphiphilic modification, aiming at specific lectin recognition. Macromolecular structure of LP-g-G3P combined alkyl, aromatic, and peptide dendritic hydrophobic moieties and was able to self-assemble spontaneously into core-shell nanoarchitectures with small particle sizes and low polydispersity in the aqueous media, which was confirmed by CAC, DLS and TEM. Furthermore, the polyaromatic anticancer drug (doxorubicin, DOX) was selectively encapsulated in the hydrophobic core through multiple interactions with the dendrons, including π-π interactions, hydrogen bonding and hydrophobic interactions. Such multiple interactions had the merits of enhanced drug loading capacity (16.89 ± 2.41%), good stability against dilution, and excellent sustained release property. The cell viability assay presented that LP-g-G3P nanoparticles had an excellent biocompatibility both in the normal and tumor cells. Moreover, LP-g-G3P/DOX nanoparticles could be effectively internalized into the hepatoma carcinoma cells and dramatically inhibited cell proliferation. Thus, this approach paves the way to develop amphiphilic and biofunctional glycopolypeptide-based drug delivery systems.the European Commission Research and Innovation (PIRSES-GA-2011-295218

    Skill-Based Few-Shot Selection for In-Context Learning

    Full text link
    In-context learning is the paradigm that adapts large language models to downstream tasks by providing a few examples. Few-shot selection -- selecting appropriate examples for each test instance separately -- is important for in-context learning. In this paper, we propose Skill-KNN, a skill-based few-shot selection method for in-context learning. The key advantages of Skill-KNN include: (1) it addresses the problem that existing methods based on pre-trained embeddings can be easily biased by surface natural language features that are not important for the target task; (2) it does not require training or fine-tuning of any models, making it suitable for frequently expanding or changing example banks. The key insight is to optimize the inputs fed into the embedding model, rather than tuning the model itself. Technically, Skill-KNN generates the skill-based descriptions for each test case and candidate example by utilizing a pre-processing few-shot prompting, thus eliminating unimportant surface features. Experimental results across five cross-domain semantic parsing datasets and six backbone models show that Skill-KNN significantly outperforms existing methods.Comment: Accepted by EMNLP 2023 main conferenc
    corecore